Entropy, Free Energy, and Equilibrium Chapter 18

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Spontaneous Physical and Chemical Processes

- A waterfall runs downhill
- A lump of sugar dissolves in a cup of coffee
- At 1 atm, water freezes below $0^{\circ} \mathrm{C}$ and ice melts above $0^{\circ} \mathrm{C}$
- Heat flows from a hotter object to a colder object
- A gas expands in an evacuated bulb
- Iron exposed to oxygen and water forms rust

spontaneous

nonspontaneous

Does a decrease in enthalpy mean a reaction proceeds spontaneously?

Spontaneous reactions
$\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{n}) \Delta H^{0}=-890.4 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{H}^{+}(a q)+\mathrm{OH}^{-}(a q) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{n}) \Delta H^{0}=-56.2 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{H}_{2} \mathrm{O}(\mathrm{s}) \longrightarrow \mathrm{H}_{2} \mathrm{O}\left(\mathrm{I} \quad \Delta H^{0}=6.01 \mathrm{~kJ} / \mathrm{mol}\right.$
$\mathrm{NH}_{4} \mathrm{NO}_{3}(s) \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{NH}_{4}{ }^{+}(a q)+\mathrm{NO}_{3}^{-}(\mathrm{aq}) \Delta \mathrm{H}^{\mathrm{O}}=25 \mathrm{~kJ} / \mathrm{mol}$

Entropy (\mathbf{S}) is a measure of the randomness or disorder of a system.

disorder \uparrow
$s \uparrow$

$$
\Delta S=S_{\mathrm{f}}-S_{\mathrm{i}}
$$

If the change from initial to final results in an increase in randomness

$$
S_{\mathrm{f}}>S_{\mathrm{i}} \quad \Delta S>0
$$

For any substance, the solid state is more ordered than the liquid state and the liquid state is more ordered than gas state

$$
\begin{gathered}
S_{\text {solid }}<S_{\text {liquid }} \ll S_{\text {gas }} \\
\left.\mathrm{H}_{2} \mathrm{O}(s) \longrightarrow \mathrm{H}_{2} \mathrm{O}_{(}\right) \quad \Delta S>0
\end{gathered}
$$

Entropy

Distribution
Microstates

I

$W=$ number of microstates
$S=k \ln W$
$\Delta S=S_{f}-S_{i}$
$\Delta S=k \ln \frac{W_{f}}{W_{i}}$
$W_{f}>W_{i}$ then $\Delta S>0$
$W_{f}<W_{i}$ then $\Delta S<0$

Processes that lead to an increase in entropy $(\Delta S>0)$

Example: $\mathrm{Br}_{2}(\mathrm{I}) \longrightarrow \mathrm{Br}_{2}(\mathrm{~g})$

$\Delta S>0$

Example: $I_{2}(\mathrm{~s}) \longrightarrow I_{2}(\mathrm{~g})$

$\Delta S>0$

How does the entropy of a system change for each of the following processes?
(a) Condensing water vapor

Randomness decreases
Entropy decreases ($\Delta S<0$)
(b) Forming sucrose crystals from a supersaturated solution

Randomness decreases Entropy decreases ($\Delta S<0$)
(c) Heating hydrogen gas from $60^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$

Randomness increases
Entropy increases ($\Delta S>0$)
(d) Subliming dry ice

Randomness increases
Entropy increases ($\Delta S>0$)

Entropy

State functions are properties that are determined by the state of the system, regardless of how that condition was achieved.
Examples:
energy, enthalpy, pressure, volume, temperature, entropy Review

Potential energy of hiker 1 and hiker 2 is the same even though they took different paths.

TABLE 18.1

Standard Entropy Values	
$\left(\mathbf{S}^{\circ}\right)$ for Some Substances	
at $25^{\circ} \mathrm{C}$	
Substance	\mathbf{S}°
$\mathbf{(J / K} \cdot \mathbf{\text { mol }})$	
$\mathrm{H}_{2} \mathrm{O}(l)$	69.9
$\mathrm{H}_{2} \mathrm{O}(g)$	188.7
$\mathrm{Br}_{2}(l)$	152.3
$\mathrm{Br}_{2}(g)$	245.3
$\mathrm{I}_{2}(s)$	116.7
$\mathrm{I}_{2}(g)$	260.6
C (diamond)	2.4
C (graphite)	5.69
CH_{4} (methane)	186.2
$\mathrm{C}_{2} \mathrm{H}_{6}$ (ethane)	229.5
$\mathrm{He}(g)$	126.1
$\mathrm{Ne}(g)$	146.2

First Law of Thermodynamics

Energy can be converted from one form to another but energy cannot be created or destroyed.

Second Law of Thermodynamics

The entropy of the universe increases in a spontaneous process and remains unchanged in an equilibrium process.

Spontaneous process:
Equilibrium process:

$$
\begin{aligned}
& \Delta S_{\text {univ }}=\Delta S_{\text {sys }}+\Delta S_{\text {surr }}>0 \\
& \Delta S_{\text {univ }}=\Delta S_{\text {sys }}+\Delta S_{\text {surr }}=0
\end{aligned}
$$

Entropy Changes in the System ($\Delta S_{\text {sys }}$)

The standard entropy of reaction ($\Delta S_{\mathrm{rxn}}^{0}$) is the entropy change for a reaction carried out at 1 atm and $25^{\circ} \mathrm{C}$.

$$
\begin{gathered}
a \mathrm{~A}+b \mathrm{~B} \longrightarrow c \mathrm{C}+d \mathrm{D} \\
\Delta S_{\mathrm{rxn}}^{0}=\quad\left[c S^{0}(\mathrm{C})+d S^{0}(\mathrm{D})\right]-\left[a S^{0}(\mathrm{~A})+b S^{0}(\mathrm{~B})\right] \\
\Delta S_{\mathrm{rxn}}^{0}=\Sigma n S^{0}(\text { products })-\Sigma m S^{0}(\text { reactants })
\end{gathered}
$$

What is the standard entropy change for the following reaction at $25^{\circ} \mathrm{C}$? $2 \mathrm{CO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})$

$$
\begin{aligned}
& S^{0}(\mathrm{CO})=197.9 \mathrm{~J} / \mathrm{K} \cdot \mathrm{~mol} \quad S^{0}\left(\mathrm{CO}_{2}\right)=213.6 \mathrm{~J} / \mathrm{K} \cdot \mathrm{~mol} \\
& S^{0}\left(\mathrm{O}_{2}\right)=205.0 \mathrm{~J} / \mathrm{K} \cdot \mathrm{~mol} \\
& \quad \Delta S_{\mathrm{rnn}}^{0}=2 \times \mathrm{S}^{0}\left(\mathrm{CO}_{2}\right)-\left[2 \times S^{0}(\mathrm{CO})+S^{0}\left(\mathrm{O}_{2}\right)\right] \\
& \quad \Delta S_{\mathrm{rxn}}^{0}=427.2-[395.8+205.0]=-173.6 \mathrm{~J} / \mathrm{K} \cdot \mathrm{~mol}
\end{aligned}
$$

Entropy Changes in the System ($\Delta S_{\text {sys }}$)

When gases are produced (or consumed)

- If a reaction produces more gas molecules than it consumes, $\Delta S^{0}>0$.
- If the total number of gas molecules diminishes, $\Delta S^{0}<0$.
- If there is no net change in the total number of gas molecules, then ΔS^{0} may be positive or negative BUT ΔS^{0} will be a small number.

What is the sign of the entropy change for the following reaction?

$$
2 \mathrm{Zn}(s)+\mathrm{O}_{2}(g) \longrightarrow 2 \mathrm{ZnO}(s)
$$

The total number of gas molecules goes down, ΔS is negative.

Entropy Changes in the Surroundings ($\Delta S_{\text {surr }}$)

Exothermic Process

$$
\Delta S_{\text {surr }}>0
$$

Endothermic Process

$$
\Delta S_{\text {surr }}<0
$$

Third Law of Thermodynamics

The entropy of a perfect crystalline substance is zero at the absolute zero of temperature.

$$
\begin{aligned}
S & =k \ln W \\
W & =1 \\
S & =0
\end{aligned}
$$

Temperature (K)

Gibbs Free Energy

Spontaneous process:
Equilibrium process:

$$
\begin{aligned}
& \Delta S_{\text {univ }}=\Delta S_{\text {sys }}+\Delta S_{\text {surr }}>0 \\
& \Delta S_{\text {univ }}=\Delta S_{\text {sys }}+\Delta S_{\text {surr }}=0
\end{aligned}
$$

For a constant temperature and constant pressure process:

$$
\Delta G=\Delta H_{\text {sys }}-\mathrm{T} \Delta S_{\text {sys }}
$$

Gibbs free energy (G)
$\Delta G<0 \quad$ The reaction is spontaneous in the forward direction.
$\Delta G>0$ The reaction is nonspontaneous as written. The reaction is spontaneous in the reverse direction.
$\Delta G=0 \quad$ The reaction is at equilibrium.

The standard free-energy of reaction ($\Delta G_{1 \times n}^{0}$) is the freeenergy change for a reaction when it occurs under standardstate conditions.

$$
a \mathrm{~A}+b \mathrm{~B} \longrightarrow c \mathrm{C}+d \mathrm{D}
$$

$\Delta G_{r x n}^{0}=\left[c \Delta G_{f}^{0}(C)+d \Delta G_{f}^{0}(D)\right]-\left[a \Delta G_{f}^{0}(A)+b \Delta G_{f}^{0}(B)\right]$
$\Delta G_{\mathrm{rxn}}^{0}=\Sigma n \Delta G_{f}^{0}($ products $)-\Sigma m \Delta G_{\mathrm{f}}^{0}($ reactants $)$

Standard free energy of formation (ΔG_{f}^{0}) is the free-energy change that occurs when 1 mole of the compound is formed from its elements in their standard states.
ΔG_{f}^{0} of any element in its stable form is zero.

TABLE 18.2
 Conventions for Standard States

State of Standard Matter State

Gas 1 atm pressure
Liquid Pure liquid
Solid
Elements* $\quad \Delta G_{\mathrm{f}}^{\circ}=0$
Solution
1 molar concentration
*The most stable allotropic form at $25^{\circ} \mathrm{C}$ and 1 atm .

What is the standard free-energy change for the following reaction at $25^{\circ} \mathrm{C}$?

$$
\begin{aligned}
& 2 \mathrm{C}_{6} \mathrm{H}_{6}(\Lambda)+15 \mathrm{O}_{2}(g) \longrightarrow 12 \mathrm{CO}_{2}(g)+6 \mathrm{H}_{2} \mathrm{O}(\Lambda) \\
& \Delta \mathrm{G}_{\mathrm{rxn}}^{0}=\Sigma n \Delta \mathrm{G}_{\mathrm{f}}^{0} \text { (products) }-\Sigma m \Delta \mathrm{G}_{\mathrm{f}}^{0} \text { (reactants) } \\
& \Delta \mathrm{G}_{\mathrm{rxn}}^{0}=\left[12 \Delta \mathrm{G}_{f}^{0}\left(\mathrm{CO}_{2}\right)+6 \Delta \mathrm{G}_{f}^{0}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]-\left[2 \Delta \mathrm{G}_{f}^{0}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)\right] \\
& \Delta \mathrm{G}_{r x n}^{0}=[12 x-394.4+6 \mathrm{x}-237.2]-[2 \times 124.5]=-6405 \mathrm{~kJ} / \mathrm{mol}
\end{aligned}
$$

Is the reaction spontaneous at $25^{\circ} \mathrm{C}$?

$$
\Delta \mathrm{G}^{0}=-6405 \mathrm{~kJ} / \mathrm{mol}<0
$$

spontaneous

$\Delta G=\Delta H-T \Delta S$

TABLE 18.3 Factors Affecting the Sign of ΔG in the Relationship $\Delta G=\Delta H-T \Delta S$

ΔH	ΔS	ΔG	Example
+	+	Reaction proceeds spontaneously at high temperatures. At low temperatures, reaction is spontaneous in the reverse direction.	$2 \mathrm{HgO}(s) \longrightarrow 2 \mathrm{Hg}(l)+\mathrm{O}_{2}(g)$
+	-	ΔG is always positive. Reaction is spontaneous in the reverse direction at all temperatures.	$3 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{O}_{3}(\mathrm{~g})$
-	+	ΔG is always negative. Reaction proceeds spontaneously at all temperatures.	$2 \mathrm{H}_{2} \mathrm{O}_{2}(a q) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(l)+\mathrm{O}_{2}(g)$
-	-	Reaction proceeds spontaneously at low temperatures. At high temperatures, the reverse reaction becomes spontaneous.	$\mathrm{NH}_{3}(g)+\mathrm{HCl}(g) \longrightarrow \mathrm{NH}_{4} \mathrm{Cl}(s)$

Temperature and Spontaneity of Chemical Reactions

$$
\mathrm{CaCO}_{3}(\mathrm{~s}) \rightleftarrows \mathrm{CaO}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})
$$

Equilibrium Pressure of CO_{2}

$\Delta H^{0}=177.8 \mathrm{~kJ} / \mathrm{mol}$
$\Delta S^{0}=160.5 \mathrm{~J} / \mathrm{K} \cdot \mathrm{mol}$
$\Delta G^{0}=\Delta H^{0}-T \Delta S^{0}$
At $25^{\circ} \mathrm{C}, \Delta G^{0}=130.0 \mathrm{~kJ} / \mathrm{mol}$
$\Delta G^{0}=0$ at $835^{\circ} \mathrm{C}$

Gibbs Free Energy and Phase Transitions

Chemistry In Action: The Efficiency of Heat Engines

Gibbs Free Energy and Chemical Equilibrium

$$
\Delta G=\Delta G^{0}+R T \ln Q
$$

R is the gas constant ($8.314 \mathrm{~J} / \mathrm{K} \cdot \mathrm{mol}$)
T is the absolute temperature (K)
Q is the reaction quotient
At Equilibrium

$$
\begin{gathered}
\Delta G=0 \quad Q=K \\
0=\Delta G^{0}+R T \ln K \\
\Delta G^{0}=-R T \ln K
\end{gathered}
$$

Free Energy Versus Extent of Reaction

$\Delta G^{0}<0$

$\Delta \mathrm{G}^{0}>0$

$$
\Delta G^{0}=-R T \ln K
$$

TABLE 18.4
 Relation Between ΔG° and K as Predicted by the Equation $\Delta \mathbf{G}^{\circ}=-R T$ In K

\boldsymbol{K}	In \boldsymbol{K}	$\boldsymbol{\Delta} \mathbf{G}^{\circ}$	Comments
>1	Positive	Negative	Products are favored over reactants at equilibrium.
$=1$	0	0	Products and reactants are equally favored at equilibrium.
<1	Negative	Positive	Reactants are favored over products at equilibrium.

Coupled Reactions

Example: \quad Alanine + Glycine \longrightarrow Alanylglycine

$$
\begin{gathered}
\Delta G^{0}=+29 \mathrm{~kJ} \\
\mathrm{~K}<1 \\
\mathrm{ATP}+\mathrm{H}_{2} \mathrm{O}+\text { Alanine }+ \text { Glycine } \longrightarrow \mathrm{ADP}+\mathrm{H}_{3} \mathrm{PO}_{4}+\text { Alanylglycine }
\end{gathered}
$$

$$
\Delta G^{0}=-2 \mathrm{~kJ} \quad K>1
$$

Mechanical Analog of Couple Reactions

Make the smaller weight move upward (a nonspontaneous process) by coupling it with the falling of a larger weight.

The Structure of ATP and ADP in Ionized Forms

Adenosine triphosphate (ATP)

Adenosine diphosphate (ADP)

Chemistry In Action: The Thermodynamics of a Rubber Band

$$
T \Delta S=\Delta H-\Delta G
$$

Low Entropy

